

Prepared by RoboMaster Organizing Committee Updated in January, 2024

## **Change Log**

| Date              | Version | Changes                                                                                                                                |  |
|-------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| January 26, 2024  | V1.6.1  | <ol> <li>Revised command codes 0x0101, 0x0201, 0x0203, 0x0209, 0x020A,<br/>0x0303.</li> </ol>                                          |  |
|                   |         | <ol> <li>Resolved known issues such as inconsistent data segment lengths and<br/>structure definition errors.</li> </ol>               |  |
|                   |         | 3. Optimized some descriptions.                                                                                                        |  |
|                   |         | <ol> <li>Revised the transmission frequencies for command codes 0x0001,<br/>0x0101, 0x0105, 0x0203, 0x0205, 0x020A</li> </ol>          |  |
| November 22, 2023 | V1.6    | <ol> <li>Revised command codes 0x0101, 0x0102, 0x0104, 0x0105, 0x0201,<br/>0x0203, 0x0209, 0x0301, 0x0303, 0x0307.</li> </ol>          |  |
|                   |         | 3. Added command codes 0x020D, 0x020E, 0x0308.                                                                                         |  |
|                   |         | 4. Optimized some descriptions.                                                                                                        |  |
|                   | V1.5    | <ol> <li>Added descriptions about the transmission/trigger conditions and<br/>sender/receiver of all command words.</li> </ol>         |  |
|                   |         | <ol> <li>Added descriptions about the regular link and VTM link of the Referee<br/>System.</li> </ol>                                  |  |
| July 7, 2023      |         | <ol> <li>Revised command codes 0x0101, 0x0204, 0x0205, 0x0208, and 0x0209.</li> </ol>                                                  |  |
|                   |         | 4. Added command codes 0x020B, 0X020C, 0x0307, and 0x0306.                                                                             |  |
|                   |         | 5. Deleted command codes 0x0004, 0x0005, and 0x0103.                                                                                   |  |
|                   |         | 6. Optimized some descriptions.                                                                                                        |  |
| August 5, 2022    | V1.4    | Revised the transmission frequencies and trigger methods for command codes 0x0001, 0x0003, 0x0101, 0x0105, 0x0204, 0x0208, and 0x0209. |  |
| December 31, 2021 | V1.3    | Revised the distribution of the Buff/Debuff Zones and lurking mode in the<br>RoboMaster AI Challenge. 0x0005                           |  |
| April 30, 2021    | V1.2    | Fixed some errors.                                                                                                                     |  |

| Date             | Version | Changes            |
|------------------|---------|--------------------|
| April 19, 2021   | V1.1    | Fixed some errors. |
| February 3, 2021 | V1.0    | First release      |

## **Table of Contents**

| Change Log                                                    |    |
|---------------------------------------------------------------|----|
| 1. Serial Port Protocol Format                                | 5  |
| 2. Command Code IDs and Regular Link Data Description         | 7  |
| 3. Small Map Interaction Data                                 |    |
| 3.1 Data Transmission by Player Clients                       |    |
| 3.2 Data Receiving by Player Clients                          |    |
| 4. VTM Link Data Descriptions                                 |    |
| 4.1 Custom Controller and Robot Interaction Data Descriptions |    |
| 4.2 Keyboard-Mouse Remote Control Data                        | 39 |
| 5. Non-Link Data Description                                  | 41 |
| Appendix 1 CRC Code Samples                                   | 43 |
| Appendix 2 ID Descriptions                                    | 47 |
|                                                               |    |

## **1. Serial Port Protocol Format**

The serial port is used for communication and is configured with a Baud rate of 115200, an 8-bit data bit, and a 1bit stop bit without hardware flow control and check bit.

Table 1-1 Communication protocol format

| frame_header | cmd_id | data   | frame_tail                          |
|--------------|--------|--------|-------------------------------------|
| 5-byte       | 2-byte | n-byte | 2-byte, CRC16, full packet<br>check |

Table 1-2 Frame header format

| SOF    | data_length | seq    | CRC8   |
|--------|-------------|--------|--------|
| 1-byte | 2-byte      | 1-byte | 1-byte |

Table 1-3 Frame header definitions

| Domain      | Offset Position | Size (Byte) | Description                                             |
|-------------|-----------------|-------------|---------------------------------------------------------|
| SOF         | 0               | 1           | Data frame start byte; the fixed value is $0 \times A5$ |
| data_length | 1               | 2           | Length of data in the data frame                        |
| seq         | 3               | 1           | Sequence number                                         |
| CRC8        | 4               | 1           | Frame header CRC8                                       |

There are two types of serial port data links for the Referee System: regular links and VTM links.

• For regular links, data is relayed via the Referee System's server and Main Controller Module, where it is transmitted and received by the user serial port of the Power Management Module, as shown below:



• VTM links involve relaying data through the Referee System's player client and VTM, where it is transmitted and received by the serial port of the VTM (Transmitter), as shown below:



- In the normal operating state, the delay of data transmission through the Referee System is approximately 130 ms, with a packet loss rate of less than 1%.
- In a Competition Area with poor network conditions, the delay of data transmission through the Referee System is approximately 200 ms, with a packet loss rate of approximately 3%.
  - There may be errors in the measurement data, and the data is for your reference only.

# **2.** Command Code IDs and Regular Link Data Description

Table 2-1 Overview of command code IDs

| Command<br>Code | Data Segment<br>Length | Description                                                                                                                                     | Sender/Receiver                                  | Data Link    |
|-----------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|
| 0x0001          | 11                     | Competition status data,<br>transmitted at a fixed frequency of<br>1 Hz.                                                                        | Server→All robots                                | Regular link |
| 0x0002          | 1                      | Competition result data,<br>transmitted upon completion of the<br>competition.                                                                  | Server→All robots                                | Regular link |
| 0x0003          | 32                     | Robot health data, transmitted at a fixed frequency of 3 Hz.                                                                                    | Server→All robots                                | Regular link |
| 0x0101          | 4                      | Site event data, transmitted at a fixed frequency of 1 Hz.                                                                                      | Server→All robots of the own side                | Regular link |
| 0x0102          | 4                      | Action identifier data of the<br>Official Projectile Supplier,<br>transmitted when the Official<br>Projectile Supplier releases<br>projectiles. | Server→All robots of<br>the own side             | Regular link |
| 0x0104          | 3                      | Referee warning data, transmitted<br>when one's team is issued a<br>penalty/forfeiture and at a fixed<br>frequency of 1 Hz in other cases.      | Server→All robots of<br>the penalized team       | Regular link |
| 0x0105          | 3                      | Dart launching data, transmitted at<br>a fixed frequency of 1 Hz.                                                                               | Server $\rightarrow$ All robots of the own side  | Regular link |
| 0x0201          | 13                     | Robot performance system data,<br>transmitted at a fixed frequency of<br>10 Hz.                                                                 | Main Controller<br>Module→Corresponding<br>robot | Regular link |

| Command<br>Code | Data Segment<br>Length | Description                                                                                    | Sender/Receiver                                                   | Data Link    |
|-----------------|------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
| 0x0202          | 16                     | Real-time chassis power and barrel<br>heat data, transmitted at a fixed<br>frequency of 50 Hz. | Main Controller<br>Module→Corresponding<br>robot                  | Regular link |
| 0x0203          | 16                     | Robot position data, transmitted at a fixed frequency of 1 Hz.                                 | Main Controller<br>Module→Corresponding<br>robot                  | Regular link |
| 0x0204          | 6                      | Robot buff data, transmitted at a fixed frequency of 3 Hz.                                     | Server→Corresponding<br>robot                                     | Regular link |
| 0x0205          | 2                      | Air support time data, transmitted at a fixed frequency of 1 Hz.                               | Server→Own side's<br>Aerial Robots                                | Regular link |
| 0x0206          | 1                      | Damage status data, transmitted after the damage occurs.                                       | Main Controller<br>Module→Corresponding<br>robot                  | Regular link |
| 0x0207          | 7                      | Real-time launching data,<br>transmitted after a projectile is<br>launched.                    | Main Controller<br>Module→Corresponding<br>robot                  | Regular link |
| 0x0208          | 6                      | Projectile allowance, transmitted at<br>a fixed frequency of 10 Hz.                            | Server→Own side's<br>Hero, Standard, Sentry,<br>and Aerial Robots | Regular link |
| 0x0209          | 4                      | Robot RFID module status,<br>transmitted at a fixed frequency of<br>3 Hz.                      | Server→Own side's<br>robots with an RFID<br>module                | Regular link |
| 0x020A          | 6                      | Dart player's client command data,<br>transmitted at a fixed frequency of<br>3 Hz.             | Server→Own side's Dart<br>Robots                                  | Regular link |

| Command<br>Code | Data Segment<br>Length | Description                                                                                                                                                | Sender/Receiver                                                                | Data Link    |
|-----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------|
| 0x020B          | 40                     | Ground Robot position data,<br>transmitted at a fixed frequency of<br>1 Hz.                                                                                | Server→Own side's<br>Sentry Robots                                             | Regular link |
| 0x020C          | 6                      | Radar-marked progress data,<br>transmitted at a fixed frequency of<br>1 Hz.                                                                                | Server→Own side's<br>Radar Robots                                              | Regular link |
| 0x020D          | 4                      | Decision-making data of Sentry<br>Robot, transmitted at a fixed<br>frequency of 1 Hz.                                                                      | Server→Own side's<br>Sentry Robots                                             | Regular link |
| 0x020E          | 1                      | Decision-making data of Radar,<br>transmitted at a fixed frequency of<br>1 Hz.                                                                             | Server→Own side's<br>Radar Robots                                              | Regular link |
| 0x0301          | 128                    | Robot interaction data, transmitted<br>at a maximum frequency of 10 Hz<br>when triggered by the sender.                                                    | -                                                                              | Regular link |
| 0x0302          | 30                     | Data about the interaction between<br>the Custom Controller and robots,<br>transmitted at a maximum<br>frequency of 30 Hz when triggered<br>by the sender. | Custom<br>Controller→Robots with<br>VTM links to player<br>clients             | VTM link     |
| 0x0303          | 15                     | Player client's small map<br>interaction data, transmitted when<br>triggered by the player client.                                                         | Tap the player<br>client→Server→Own<br>side's robots selected by<br>the sender | Regular link |
| 0x0304          | 12                     | Keyboard, mouse, and remote<br>control data, transmitted at a fixed<br>frequency of 30 Hz.                                                                 | Player client→Robots<br>with VTM links to<br>player clients                    | VTM link     |

| Command<br>Code | Data Segment<br>Length | Description                                                                                                                                                        | Sender/Receiver                                                                         | Data Link    |
|-----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| 0x0305          | 10                     | Radar data received by player<br>clients' Small Maps, transmitted at<br>a maximum frequency of 10 Hz.                                                              | Radar→Server→All<br>player clients of the own<br>side                                   | Regular link |
| 0x0306          | 8                      | Data about the interaction between<br>the Custom Controller and player<br>clients, transmitted at a maximum<br>frequency of 30 Hz when triggered<br>by the sender. | Custom<br>Controller→Player<br>client                                                   | -            |
| 0x0307          | 103                    | Sentry data received by player<br>clients' Small Maps, transmitted at<br>a maximum frequency of 1 Hz.                                                              | Sentry/Semiautomatic<br>Control Robot→Player<br>client of the<br>corresponding operator | Regular link |
| 0x0308          | 34                     | Robot data received by player<br>clients' Small Map, transmitted at a<br>maximum frequency of 3 Hz.                                                                | Own side's<br>robots→Own side's<br>player clients                                       | Regular link |

Table 2-2 0x0001

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | <ul> <li>Bits 0-3: competition type</li> <li>1: RoboMaster University Championship (RMUC)</li> <li>2: RoboMaster University Technical Challenge (RMUT)</li> <li>3: ICRA RoboMaster University AI Challenge (RMUA)</li> <li>4: RoboMaster University League (RMUL) 3V3 Match</li> <li>5: RoboMaster University League (RMUL) Standard Match</li> <li>Bits 4-7: current stage</li> <li>0: pre-competition stage</li> <li>1: preparation stage</li> </ul> |

| Byte Offset | Size | Description                                                                                                                                                                |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | <ul> <li>2: 15-second Referee System initialization period</li> <li>3: 5-second countdown</li> <li>4: in competition</li> <li>5: competition result calculation</li> </ul> |
| 1           | 2    | Remaining time in the current round; unit: second.                                                                                                                         |
| 3           | 8    | UNIX time, effective after the robot is correctly connected to the Referee System's NTP server                                                                             |

typedef \_packed struct
{
 uint8\_t game\_type : 4;

uinto\_t game\_type t t; uint8\_t game\_progress : 4; uint16\_t stage\_remain\_time; uint64\_t SyncTimeStamp; }game\_status\_t;

Table 2-3 0x0002

| Byte Offset | Size | Description         |
|-------------|------|---------------------|
|             |      | • 0: Draw           |
| 0           | 1    | • 1: Red team wins  |
|             |      | • 2: Blue team wins |

#### typedef \_packed struct

{

uint8\_t winner;

}game\_result\_t;

Table 2-4 0x0003

| Byte Offset | Size | Description                                                                                         |
|-------------|------|-----------------------------------------------------------------------------------------------------|
| 0           | 2    | HP of Red 1 Hero Robot. If the robot has not entered the stage or has been ejected, the HP is zero. |
| 2           | 2    | HP of Red 2 Engineer Robot.                                                                         |
| 4           | 2    | HP of Red 3 Standard Robot.                                                                         |
| 6           | 2    | HP of Red 4 Standard Robot.                                                                         |

| Byte Offset | Size | Description                  |
|-------------|------|------------------------------|
| 8           | 2    | HP of Red 5 Standard Robot.  |
| 10          | 2    | HP of Red 7 Sentry Robot.    |
| 12          | 2    | HP of Red Outpost.           |
| 14          | 2    | HP of Red Base.              |
| 16          | 2    | HP of Blue 1 Hero Robot.     |
| 18          | 2    | HP of Blue 2 Engineer Robot. |
| 20          | 2    | HP of Blue 3 Standard Robot. |
| 22          | 2    | HP of Blue 4 Standard Robot. |
| 24          | 2    | HP of Blue 5 Standard Robot. |
| 26          | 2    | HP of Blue 7 Sentry Robot.   |
| 28          | 2    | HP of Blue Outpost.          |
| 30          | 2    | HP of Blue Base.             |

typedef \_packed struct { uint16\_t red\_1\_robot\_HP; uint16\_t red\_2\_robot\_HP; uint16\_t red\_3\_robot\_HP; uint16\_t red\_4\_robot\_HP; uint16\_t red\_5\_robot\_HP; uint16 t red 7 robot HP; uint16 t red outpost HP; uint16\_t red\_base\_HP; uint16\_t blue\_1\_robot\_HP; uint16\_t blue\_2\_robot\_HP; uint16\_t blue\_3\_robot\_HP; uint16\_t blue\_4\_robot\_HP; uint16\_t blue\_5\_robot\_HP; uint16\_t blue\_7\_robot\_HP; uint16\_t blue\_outpost\_HP; uint16 t blue base HP; }game robot HP t;

Table 2-5 0x0101

| Byte Offset | Size | Description                                                                                                                                                                                                     |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | 0: non-occupied/non-activated                                                                                                                                                                                   |
|             |      | 1: occupied/activated                                                                                                                                                                                           |
|             |      | Bits 0-2:                                                                                                                                                                                                       |
|             |      | • Bit 0: occupation status of the Restoration Zone in front of the own side's Official Projectile Supplier; a value of 1 indicates that it is occupied.                                                         |
|             |      | • Bit 1: occupation status of the Restoration Zone inside the own side's Official                                                                                                                               |
|             |      | Projectile Supplier, a value of 1 indicates that it is occupied.                                                                                                                                                |
|             |      | • Bit 2: occupation status of the own side's Supplier Zone; a value of 1 indicates that it is occupied, which applies only to RMUL.                                                                             |
|             |      | Bits 3-5: status of the own side's Power Rune                                                                                                                                                                   |
|             |      | • Bit 3: occupation status of the own side's Power Rune Activation Point; a value of 1 indicates that it is occupied.                                                                                           |
| 0           | 4    | • Bit 4: activation status of the own side's Small Power Rune; a value of 1 indicates that it is activated.                                                                                                     |
| Ū           |      | • Bit 5: activation status of the own side's Large Power Rune; a value of 1 indicates that it is activated.                                                                                                     |
|             |      | Bits 6-11: occupation status of the own side's Elevated Ground                                                                                                                                                  |
|             |      | • Bits 6-7: occupation status of the own side's Ring-Shaped Elevated Ground; a value of 1 indicates that it is occupied by the own side; a value of 2 indicates that it is occupied by the opponent.            |
|             |      | • Bits 8-9: occupation status of the own side's Trapezoid-Shaped Elevated<br>Ground; a value of 1 indicates that it is occupied by the own side; a value of<br>2 indicates that it is occupied by the opponent. |
|             |      | • Bits 10-11: occupation status of the own side's Trapezoid-Shaped Elevated Ground; a value of 1 indicates that it is occupied by the own side; a value of 2 indicates that it is occupied by the opponent.     |
|             |      | Bits 12-18: percentage of the remaining value of the own Base's Virtual Shield (rounded to the nearest integer)                                                                                                 |

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      | Bits 19-27: time when the own side's Outpost or Base was last hit by darts (valid values: 0 to 420; default value at the start of a round: 0)<br>Bits 28-29: specific target that was hit when the own side's Outpost or Base was last hit by darts. The default value at the start of a round is 0, a value of 1 indicates that the dart hits the Outpost, a value of 2 indicates that the dart hits a fixed target in the Base, and a value of 3 indicates that the dart hits a random target in the Base. |
|             |      | it is not occupied; a value of 1 indicates that it is occupied by the own side; a value of 2 indicates that it is occupied by the opponent; a value of 3 indicates that it is occupied by both sides, which applies only to RMUL                                                                                                                                                                                                                                                                             |

typedef \_packed struct
{
 uint32\_t event\_data;
}event\_data\_t;

Table 2-6 0x0102

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Reserved bit                                                                                                                                                                                                                                                                                                                                                                                         |
| 1           | 1    | <ul> <li>Reloading robot ID.</li> <li>0: No robot is reloading projectiles.</li> <li>1: The Hero Robot of the Red Team is reloading projectiles.</li> <li>3/4/5: The Standard Robot of the Red Team is reloading projectiles.</li> <li>101: The Hero Robot of the Blue Team is reloading projectiles.</li> <li>103/104/105: The Standard Robot of the Blue Team is reloading projectiles.</li> </ul> |
| 2           | 1    | <ul> <li>Status of the projectile outlet.</li> <li>0: closed</li> <li>1: preparing projectiles</li> <li>2: releasing projectiles</li> </ul>                                                                                                                                                                                                                                                          |
| 3           | 1    | Number of supplied projectiles.                                                                                                                                                                                                                                                                                                                                                                      |

| Byte Offset | Size | Description            |
|-------------|------|------------------------|
|             |      | • 50: 50 projectiles   |
|             |      | • 100: 100 projectiles |
|             |      | • 150: 150 projectiles |
|             |      | • 200: 200 projectiles |

typedef \_packed struct
{
 uint8\_t reserved;

uint8\_t supply\_robot\_id; uint8\_t supply\_projectile\_step; uint8\_t supply\_projectile\_num; } ext\_supply\_projectile\_action\_t;

Table 2-7 0x0104

| Byte Offset | Size | Description                                                                                                                                                                                                                                                           |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | <ul> <li>Level of penalty that was last received by the own side.</li> <li>1: Both teams received a Yellow Card.</li> <li>2: Yellow Card</li> <li>3: Red Card</li> <li>4: Forfeiture</li> </ul>                                                                       |
| 1           | 1    | <ul> <li>ID of the own side's offending robot that received the last penalty. (For example, Red 1 Robot's ID is 1, and Blue 1 Robot's ID is 101.)</li> <li>In the case of a forfeiture or where both teams have been issued a Yellow Card, the value is 0.</li> </ul> |
| 2           | 1    | Number of violations (at the corresponding penalty level) triggered by the own side's offending robot that received the last penalty. (The default value at the start of a round is 0.)                                                                               |

typedef \_packed struct

{

uint8\_t level; uint8\_t offending\_robot\_id; uint8\_t count; }referee\_warning\_t;

Table 2-8 0x0105

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Own side's remaining time for dart launching; unit: second.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1           | 2    | <ul> <li>Bits 0-1:</li> <li>Target that was last hit by a dart of the own side. The default value at the start of a round is 0, a value of 1 indicates that the dart hits the Outpost, a value of 2 indicates that the dart hits a fixed target in the Base, and a value of 3 indicates that the dart hits a random target in the Base.</li> <li>Bits 2-4:</li> <li>Total number of recent hits to a target in the opponent team. The default value at the start of a round is 0, and the maximum value is 4.</li> <li>Bits 5-6:</li> <li>Target currently selected to be hit by the dart. The default value at the start of a round is 0. When no hit target is selected or the Outpost is selected, the value is also 0. A value of 1 indicates that a fixed target in the Base is selected.</li> <li>Bits 7-15: Reserved bits</li> </ul> |

#### typedef \_packed struct {

uint8\_t dart\_remaining\_time; uint16\_t dart\_info; }dart\_info\_t;

Table 2-9 0x0201

| Byte Offset | Size | Description                              |
|-------------|------|------------------------------------------|
| 0           | 1    | Current robot ID.                        |
| 1           | 1    | Robot level.                             |
| 2           | 2    | Robot's current HP.                      |
| 4           | 2    | Robot's maximum HP.                      |
| 6           | 2    | Robot's barrel cooling value per second. |

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8           | 2    | Robot's barrel heat limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10          | 2    | Robot's chassis power consumption limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12          | 1    | <ul> <li>Output status of the Power Management Module.</li> <li>Bit 0: output from the gimbal port. A value of 0 indicates zero output, and a value of 1 indicates 24 V output.</li> <li>Bit 1: output from the chassis port. A value of 0 indicates zero output, and a value of 1 indicates 24 V output.</li> <li>Bit 2: output from the shooter port. A value of 0 indicates zero output, and a value of 1 indicates 24 V output.</li> <li>Bit 2: output from the shooter port. A value of 0 indicates zero output, and a value of 1 indicates 24 V output.</li> <li>Bit 3-7: Reserved bits</li> </ul> |

typedef \_packed struct
{
 uint8\_t robot\_id;
 uint8\_t robot\_level;
 uint16\_t current\_HP;
 uint16\_t maximum\_HP;
 uint16\_t shooter\_barrel\_cooling\_value;
 uint16\_t shooter\_barrel\_heat\_limit;
 uint16\_t chassis\_power\_limit;
 uint16\_t power\_management\_gimbal\_output : 1;
 uint8\_t power\_management\_chassis\_output : 1;
 uint8\_t power\_management\_shooter\_output : 1;

#### }robot\_status\_t;

Table 2-10 0x0202

| Byte Offset | Size | Description                                                                  |
|-------------|------|------------------------------------------------------------------------------|
| 0           | 2    | Output voltage of the chassis port in the Power Management Module; unit: mV. |
| 2           | 2    | Output current of the chassis port in the Power Management Module; unit: mA. |
| 4           | 4    | Chassis power; unit: W.                                                      |
| 8           | 2    | Buffer energy; unit: J.                                                      |
| 10          | 2    | Barrel heat of the 1st 17mm Launching Mechanism.                             |
| 12          | 2    | Barrel heat of the 2nd 17mm Launching Mechanism.                             |

| 14                                                                                                                                                            | 2                                                                                                                   | Barrel heat of the 42mm Launching Mechanism. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| typedef _packed<br>{<br>uint16_t chas<br>uint16_t chas<br>float chassis_<br>uint16_t buff<br>uint16_t shoo<br>uint16_t shoo<br>uint16_t shoo<br>uint16_t shoo | l struct<br>sis_voltage;<br>sis_current;<br>power;<br>er_energy;<br>ter_17mm_1_ba<br>ter_17mm_2_ba<br>ter_42mm_barr | arrel_heat;<br>arrel_heat;<br>rel_heat;      |

}power\_heat\_data\_t;
Table 2-11 0x0203

| Byte Offset | Size | Description                                                                           |
|-------------|------|---------------------------------------------------------------------------------------|
| 0           | 4    | The x-coordinate of the robot's position; unit: m.                                    |
| 4           | 4    | The y-coordinate of the robot's position; unit: m.                                    |
| 8           | 4    | Direction of the robot's Speed Monitor Module; unit: degree. True north is 0 degrees. |

#### typedef \_packed struct

{

float x;
float y;
float angle;
}robot\_pos\_t;

Table 2-12 0x0204

| Byte Offset | Size | Description                                                                                                             |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Robot's HP recovery buff (in percentage; a value of 10 indicates that HP recovery per second is 10% of the maximum HP.) |
| 1           | 1    | Robot's barrel cooling rate (in absolute value; a value of 5 indicates a cooling rate of 5 times.)                      |
| 2           | 1    | Robot's defense buff (in percentage; a value of 50 indicates a defense buff of 50%.)                                    |
| 3           | 1    | Robot's negative defense buff (in percentage; a value of 30 indicates a defense buff of -30%.)                          |
| 4           | 2    | Robot's attack buff (in percentage; a value of 50 indicates an attack buff of 50%.)                                     |

typedef \_packed struct
{
 uint8\_t recovery\_buff;

uint8\_t cooling\_buff; uint8\_t defence\_buff; uint8\_t vulnerability\_buff; uint16\_t attack\_buff; uiff t:

#### }buff\_t;

Table 2-13 0x0205

| Byte Offset | Size | Description                                                                                                                                                                                                                                                          |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Aerial Robot's status (a value of 0 indicates that it is cooling, a value of 1 indicates that cooling is completed, and a value of 2 indicates that air support is ongoing.)                                                                                         |
| 1           | 1    | Remaining time of the current status (unit: s; the value is rounded down to the nearest integer. For example, if the remaining cooling time is 1.9 s, the value is rounded down to 1.)<br>If the cooling time is 0 but no air support is called for, the value is 0. |

## typedef \_packed struct {

uint8\_t airforce\_status; uint8\_t time\_remain; }air\_support\_data\_t;

#### Table 2-14 0x0206

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | <ul> <li>Bits 0-3: If HP deduction is caused because an Armor Module is attacked by projectiles, hit in a collision, or goes offline, or a Speed Monitor Module goes offline, the 4-bit value indicates the ID of the Armor Module or Speed Monitor Module. If HP deduction is caused by other reasons, the value is 0.</li> <li>Bits 4-7: type of an HP change.</li> <li>0: HP deduction is caused because an Armor Module is attacked by projectiles.</li> <li>1: HP deduction is caused because the Critical Referee System Module goes offline.</li> <li>2: HP deduction is caused because the Initial Launching Speed exceeds the upper limit.</li> </ul> |

| Byte Offset | Size | Description                                                                          |
|-------------|------|--------------------------------------------------------------------------------------|
|             |      | • 3: HP deduction is caused because the Barrel Heat exceeds the upper limit.         |
|             |      | • 4: HP deduction is caused because the Chassis Power Consumption Limit is exceeded. |
|             |      | • 5: HP deduction is caused because the Armor Module suffers a collision.            |

typedef \_packed struct

{

uint8\_t armor\_id : 4; uint8\_t HP\_deduction\_reason : 4;

}hurt\_data\_t;

Table 2-15 0x0207

| Byte Offset | Size | Description                               |
|-------------|------|-------------------------------------------|
|             |      | Projectile type.                          |
| 0           | 1    | • 1: 17mm projectile                      |
|             |      | • 2: 42mm projectile                      |
| 1           | 1    | Launching mechanism ID.                   |
|             |      | • 1: First 17mm launching mechanism       |
|             |      | • 2: Second 17mm launching mechanism      |
|             |      | • 3: 42mm launching mechanism             |
| 2           | 1    | Projectile launching frequency; unit: Hz. |
| 3           | 4    | Initial projectile speed; unit: m/s.      |

#### typedef \_packed struct

{

uint8\_t bullet\_type; uint8\_t shooter\_number; uint8\_t launching\_frequency; float initial\_speed; }shoot\_data\_t;

Table 2-16 0x0208

| Byte Offset | Size | Description                |
|-------------|------|----------------------------|
| 0           | 2    | 17mm projectile allowance. |

| Byte Offset | Size | Description                     |
|-------------|------|---------------------------------|
| 2           | 2    | 42mm projectile allowance.      |
| 4           | 2    | Number of remaining Gold Coins. |

typedef \_packed struct

{
 uint16\_t projectile\_allowance\_17mm;
 uint16\_t projectile\_allowance\_42mm;
 uint16\_t remaining\_gold\_coin;
}projectile\_allowance\_t;

Table 2-17 0x0209

| Byte Offset | Size | Description                                                                                   |
|-------------|------|-----------------------------------------------------------------------------------------------|
|             |      | Meaning of bit value 0 or 1: whether the Buff Point's RFID card is detected.                  |
|             |      | • Bit 0: own side's Base Buff Point                                                           |
|             |      | • Bit 1: own side's Ring-Shaped Elevated Ground Buff Point                                    |
|             |      | • Bit 2: opponent's Ring-Shaped Elevated Ground Buff Point                                    |
|             |      | • Bit 3: own side's R3/B3 Trapezoid-Shaped Elevated Ground Buff Point                         |
|             | 4    | • Bit 4: opponent's R3/B3 Trapezoid-Shaped Elevated Ground Buff Point                         |
|             |      | • Bit 5: own side's R4/B4 Trapezoid-Shaped Elevated Ground Buff Point                         |
|             |      | • Bit 6: opponent's R4/B4 Trapezoid-Shaped Elevated Ground Buff Point                         |
| 0           |      | • Bit 7: own side's Power Rune Activation Point                                               |
| 0           |      | • Bit 8: own side's Launch Ramp Buff Point (in front of the Launch Ramp near own side)        |
|             |      | • Bit 9: own side's Launch Ramp Buff Point (behind the Launch Ramp near own side)             |
|             |      | • Bit 10: opponent's Launch Ramp Buff Point (in front of the Launch Ramp near the other side) |
|             |      | • Bit 11: opponent's Launch Ramp Buff Point (behind the Launch Ramp near the other side)      |
|             |      | • Bit 12: own side's Outpost Buff Point                                                       |
|             |      | • Bit 13: own side's Restoration Zone (deemed activated if anyone is detected)                |

| Byte Offset | Size | Description                                                                          |
|-------------|------|--------------------------------------------------------------------------------------|
|             |      | • Bit 14: own side's Sentry Patrol Zones                                             |
|             |      | • Bit 15: opponent's Sentry Patrol Zones                                             |
|             |      | • Bit 16: own side's Large Resource Island Buff Point                                |
|             |      | • Bit 17: opponent's Large Resource Island Buff Point                                |
|             |      | • Bit 18: own side's Exchange Zone                                                   |
|             |      | • Bit 19: Central Buff Point (for RMUL only)                                         |
|             |      | • Bits 20-31: Reserved bits                                                          |
|             |      | Note: The RFID card of the Base Buff Point, Elevated Ground Buff Point, Launch       |
|             |      | Ramp Buff Point, Outpost Buff Point, Resource Island Buff Point, Restoration         |
|             |      | Zone, Exchange Zones, Central Buff Point (for RMUL only), and Sentry Patrol          |
|             |      | Zones are effective only during the competition. If an RFID card is detected outside |
|             |      | the competition, the corresponding value remains 0.                                  |

# typedef \_packed struct { uint32\_t rfid\_status; }rfid\_status\_t;

### Table 2-18 0x020A

| Byte Offset | Size | Description                                                                                                                   |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Current status of the Dart Launching Station. <ul> <li>1: closed</li> <li>2: opening or closing</li> <li>0: opened</li> </ul> |
| 1           | 1    | Reserved bits                                                                                                                 |
| 2           | 2    | Remaining competition time when the attack target is changed. Unit: s. If no target change occurs, the value is 0 by default. |
| 4           | 2    | Remaining competition time when the Operator confirms the launch command for the last time. Unit: s. Initial value: 0.        |

#### typedef \_packed struct

uint8\_t dart\_launch\_opening\_status; uint8\_t reserved; uint16\_t target\_change\_time; uint16\_t latest\_launch\_cmd\_time; }dart\_client\_cmd\_t;

Table 2-19 0x020B



The intersection of the site perimeter wall near the Red Team's Official Projectile Supplier is the origin; the orientation of the site's longer edge facing the Blue Team is the positive x-axis direction, while the orientation of the site's shorter edge facing the Red Team's Landing Pad is the positive y-axis direction.

| Byte Offset | Size | Description                                                            |
|-------------|------|------------------------------------------------------------------------|
| 0           | 4    | The x-axis coordinate of the own side's Hero Robot; unit: m.           |
| 4           | 4    | The y-axis coordinate of the own side's Hero Robot; unit: m.           |
| 8           | 4    | The x-axis coordinate of the own side's Engineer Robot; unit: m.       |
| 12          | 4    | The y-axis coordinate of the own side's Engineer Robot; unit: m.       |
| 16          | 4    | The x-axis coordinate of the own side's Standard Robot No. 3; unit: m. |
| 20          | 4    | The y-axis coordinate of the own side's Standard Robot No. 3; unit: m. |
| 24          | 4    | The x-axis coordinate of the own side's Standard Robot No. 4; unit: m. |
| 28          | 4    | The y-axis coordinate of the own side's Standard Robot No. 4; unit: m. |
| 32          | 4    | The x-axis coordinate of the own side's Standard Robot No. 5; unit: m. |
| 36          | 4    | The y-axis coordinate of the own side's Standard Robot No. 5; unit: m. |

#### typedef \_packed struct

float hero\_x; float hero\_y; float engineer\_x; float engineer\_y; float standard\_3\_x; float standard\_3\_y; float standard\_4\_x; float standard\_4\_y;

## float standard\_5\_x; float standard\_5\_y; }ground\_robot\_position\_t;

Table 2-20 0x020C

| Byte Offset | Size | Description                                                   |  |
|-------------|------|---------------------------------------------------------------|--|
| 0           | 1    | Marked progress of the opponent's Hero Robot. 0-120           |  |
| 1           | 1    | Marked progress of the opponent's Engineer Robot. 0-120       |  |
| 2           | 1    | Marked progress of the opponent's Standard Robot No. 3. 0-120 |  |
| 3           | 1    | Marked progress of the opponent's Standard Robot No. 4. 0-120 |  |
| 4           | 1    | Marked progress of the opponent's Standard Robot No. 5. 0-120 |  |
| 5           | 1    | Marked progress of the opponent's Sentry Robot. 0-120         |  |

typedef \_packed struct

{

uint8\_t mark\_hero\_progress; uint8\_t mark\_engineer\_progress; uint8\_t mark\_standard\_3\_progress; uint8\_t mark\_standard\_4\_progress; uint8\_t mark\_standard\_5\_progress; uint8\_t mark\_sentry\_progress; }radar\_mark\_data\_t;

Table 2-21 0x020D

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0           | 4    | Bits 0-10: the projectile allowance successfully exchanged by a Sentry Robot,<br>excluding the projectile exchanged through remote exchange. The value at the start<br>of a round is 0. After the Sentry Robot successfully exchanges for a specific amount<br>of projectile allowance, the value changes to the exchanged projectile allowance.<br>Bits 11-14: the number of a Sentry Robot's successful remote exchanges for<br>projectile allowance. The value at the start of a round is 0. After the Sentry Robot<br>successfully exchanges for projectile allowance remotely, the value changes to the<br>number of successful remote exchanges for projectile allowance.<br>Bits 15-18: the number of a Sentry Robot's successful remote HP exchanges. The<br>value at the start of a round is 0. After the Sentry Robot successfully exchanges for<br>HP remotely, the value changes to the number of successful remote HP exchanges. |  |

| Byte Offset    | Size      | Description               |
|----------------|-----------|---------------------------|
|                |           | Bits 19-31: Reserved bits |
| typedef _packe | ed struct |                           |

{
 uint32\_t sentry\_info;
} sentry\_info\_t;

| Tabla | 2 22 | 0v020F |
|-------|------|--------|
| Table | 2-22 | UXU2UE |

| Byte Offset | Size | Description                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0           | 1    | <ul> <li>Bits 0-1: the number of chances for the Radar to trigger the "double vulnerability" effect. The value at the start of a round is 0. Maximum value: 2.</li> <li>Bit 2: whether the "double vulnerability" effect is being triggered for the opponent.</li> <li>A value of 0 indicates that the "double vulnerability" effect is not triggered for the opponent.</li> </ul> |  |
|             | 1    | <ul> <li>A value of 1 indicates that the "double vulnerability" effect is being triggered for the opponent.</li> <li>Bits 3-7: Reserved bits</li> </ul>                                                                                                                                                                                                                            |  |

## typedef \_packed struct {

uint8\_t radar\_info;
} radar\_info\_t;

The robot interaction data is transmitted through regular links. Its data segments include a unified data segment header structure. A data segment header structure consists of the content ID, sender ID, receiver ID, and content data segment. The total length of a robot interaction data packet cannot exceed 128 bytes. After the nine bytes for frame\_header, cmd\_id, and frame\_tail, and the six bytes for the data segment header structure are deducted, the maximum length of a content data segment in a robot interaction data packet is 113 bytes.

The maximum length of data that can be received by a Hero, Engineer, Standard, or Aerial Robot or Dart every 1000 ms is 3720 bytes, while the maximum length of data that can be received by a Radar or a Sentry Robot every 1000 ms is 5120 bytes.

Table 2-23 0x0301

| Byte Offset | Size | Description    | Remarks                                |
|-------------|------|----------------|----------------------------------------|
| 0           | 2    | Sub-content ID | It needs to be an open sub-content ID. |

| Byte Offset | Size | Description              | Remarks                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2           | 2    | Sender ID                | It needs to be matched with one's own ID. For more information about the IDs, see the appendix.                                                                                                                                                                                                                                                                         |
| 4           | 2    | Receiver ID.             | <ul> <li>It is used for communication only within one's own team.</li> <li>The receiver must be an inter-robot communication receiver permitted by the rules.</li> <li>If the receiver is a player client, the data can be transmitted only to the player client corresponding to the sender.</li> <li>For more information about the IDs, see the appendix.</li> </ul> |
| 6           | х    | Content data<br>segment. | The maximum value of x is 113.                                                                                                                                                                                                                                                                                                                                          |

typedef \_packed struct
{
 uint16\_t data\_cmd\_id;
 uint16\_t sender\_id;
 uint16\_t receiver\_id;
 uint16\_t receiver\_id;
 uint16\_t receiver\_id;
 uint16\_t receiver\_id;

uint8\_t user\_data[x];

}robot\_interaction\_data\_t;

| Sub-content ID  | Content Data Segment Length | Function Description                    |
|-----------------|-----------------------------|-----------------------------------------|
| 0x0200 - 0x02FF | x ≤ 113                     | Inter-robot communication               |
| 0x0100          | 2                           | A player client deletes graphic layers. |
| 0x0101          | 15                          | A player client draws one graphic.      |
| 0x0102          | 30                          | A player client draws two graphics.     |
| 0x0103          | 75                          | A player client draws five graphics.    |
| 0x0104          | 105                         | A player client draws seven graphics.   |

| Sub-content ID | Content Data Segment Length | Function Description                       |
|----------------|-----------------------------|--------------------------------------------|
| 0x0110         | 45                          | A player client draws a character graphic. |
| 0x0120         | 4                           | Decision-making command of a Sentry Robot. |
| 0x0121         | 1                           | Decision-making command of a<br>Radar.     |

Make sure that the bandwidth is properly configured because there are multiple content IDs but the maximum uplink frequency of the entire cmd\_id is 10 Hz.

Table 2-24 Sub-content ID: 0x0100

| Byte Offset | Size | Description               | Remarks                                                                                                                      |
|-------------|------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Delete<br>operation.      | <ul> <li>0: No operation is performed.</li> <li>1: Delete a graphic layer.</li> <li>2: Delete all graphic layers.</li> </ul> |
| 1           | 1    | Number of graphic layers. | Number of graphic layers: 0 - 9.                                                                                             |

typedef \_packed struct

{

uint8\_t delete\_type;

uint8\_t layer;

}interaction\_layer\_delete\_t;

Table 2-25 Sub-content ID: 0x0101

| Byte Offset | Size | Description                | Remarks                                                                                                                   |
|-------------|------|----------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 0           | 3    | Graphic name               | Used as an index in graphic deletion, revision, and other operations.                                                     |
| 3           | 4    | Graphic<br>configuration 1 | <ul> <li>Bits 0-2: graphic operation</li> <li>0: No operation is performed.</li> <li>1. Add</li> <li>2: Modify</li> </ul> |

| Byte Offset | Size | Description               | Remarks                                                                   |
|-------------|------|---------------------------|---------------------------------------------------------------------------|
|             |      |                           | • 3: Delete                                                               |
|             |      |                           | Bits 3-5: graphic type                                                    |
|             |      |                           | • 0: straight line                                                        |
|             |      |                           | • 1: rectangle                                                            |
|             |      |                           | • 2: circle                                                               |
|             |      |                           | • 3: ellipse                                                              |
|             |      |                           | • 4: arc                                                                  |
|             |      |                           | • 5: floating number                                                      |
|             |      |                           | • 6: integer                                                              |
|             |      |                           | • 7: character                                                            |
|             |      |                           | Bits 6-9: number of graphic layers (valid values: 0 to 9)                 |
|             |      |                           | Bits 10-13: color                                                         |
|             |      |                           | • 0: Red/Blue (Own side's color)                                          |
|             |      |                           | • 1: yellow                                                               |
|             |      |                           | • 2: green                                                                |
|             |      |                           | • 3: orange                                                               |
|             |      |                           | • 4: purplish red                                                         |
|             |      |                           | • 5: pink                                                                 |
|             |      |                           | • 6: cyan                                                                 |
|             |      |                           | • 7: black                                                                |
|             |      |                           | • 8: white                                                                |
|             |      |                           | Bits 14-31: The meaning differs based on the drawn graphics, as described |
|             |      |                           | in Table 2-26 Graphic detail parameters.                                  |
|             |      | Granhia                   | Bits 0-9: line width. The recommended ratio between font size and line    |
| 7           | 4    | 4<br>4<br>configuration 2 | width is 10:1.                                                            |
|             |      |                           | Bits 10-20: start point/origin's x-coordinate.                            |

| Byte Offset | Size | Description             | Remarks                                                                                                |
|-------------|------|-------------------------|--------------------------------------------------------------------------------------------------------|
|             |      |                         | Bits 21-31: start point/origin's y-coordinate.                                                         |
| 11          | 4    | Graphic configuration 3 | The meaning differs based on the drawn graphics, as described in Table 2-26 Graphic detail parameters. |

typedef \_packed struct

{

| uint8_ | _t figure_ | _name[3]; |
|--------|------------|-----------|
|        |            |           |

uint32\_t operate\_tpye:3;

uint32\_t figure\_tpye:3;

uint32\_t layer:4; uint32\_t color:4;

uint32\_t details\_a:9;

uint32\_t details\_b:9;

uint32\_t width:10;

uint32\_t start\_x:11;

uint32\_t start\_y:11;

uint32\_t details\_c:10;

uint32\_t details\_d:11;

uint32\_t details\_e:11;

#### }interaction\_figure\_t;

Table 2-26 Graphic detail parameters

| Туре             | details_a | details_b | details_c | details_d                                 | details_e                              |
|------------------|-----------|-----------|-----------|-------------------------------------------|----------------------------------------|
| Straight<br>line | -         | -         | -         | x-coordinate of the end point             | y-coordinate of the<br>end point       |
| Rectangl<br>e    | -         | -         | -         | x-coordinate of<br>the diagonal<br>vertex | y-coordinate of the<br>diagonal vertex |
| Circle           | -         | -         | Radius    | -                                         | -                                      |
| Ellipse          | -         | -         | -         | Length of the x<br>axis                   | Length of the y axis                   |

| Туре               | details_a   | details_b                  | details_c                                                      | details_d            | details_e            |
|--------------------|-------------|----------------------------|----------------------------------------------------------------|----------------------|----------------------|
| Arc                | Start angle | End angle                  | - Length of the x<br>axis                                      |                      | Length of the y axis |
| Floating<br>number | Font size   | No effect                  | Divide the value by 1000 to obtain the actual displayed value. |                      |                      |
| Integer            | Font size   | -                          | 3                                                              | 2-bit integer, int32 | 2_t                  |
| Character          | Font size   | Font size Character length |                                                                | -                    | -                    |

- Meaning of angle value: 0° points at 12 o'clock, drawn in the clockwise direction.
- Screen position: (0,0) is at the lower left corner of the screen, while (1920,1080) is at the upper right corner.
- Floating number: All integers are 32-bit. For a floating number, the actual displayed value is 1/1000 of the entered value. For example, if the value entered corresponding to details\_c, details\_d, and details\_e is 1234, the actual value displayed on the player's client will be 1.234.
  - The graphics may still appear even if the transmitted value exceeds the upper limit of the corresponding data type, but the display quality may be compromised.

Table 2-27 Sub-content ID: 0x0102

| Byte Offset | Size | Description | Remarks                          |
|-------------|------|-------------|----------------------------------|
| 0           | 15   | Graphic 1   | Same as the 0x0101 data segment. |
| 15          | 15   | Graphic 2   | Same as the 0x0101 data segment. |

typedef \_packed struct

{

Q.

interaction\_figure\_t interaction\_figure[2];

}interaction\_figure\_2\_t;

Table 2-28 Sub-content ID: 0x0103

| Byte Offset | Size | Description | Remarks                          |
|-------------|------|-------------|----------------------------------|
| 0           | 15   | Graphic 1   | Same as the 0x0101 data segment. |
| 15          | 15   | Graphic 2   | Same as the 0x0101 data segment. |
| 30          | 15   | Graphic 3   | Same as the 0x0101 data segment. |
| 45          | 15   | Graphic 4   | Same as the 0x0101 data segment. |
| 60          | 15   | Graphic 5   | Same as the 0x0101 data segment. |

typedef \_packed struct

#### {

#### interaction\_figure\_t interaction\_figure[5];

}interaction\_figure\_3\_t;

Table 2-29 Sub-content ID: 0x0104

| Byte Offset | Size | Description | Remarks                          |
|-------------|------|-------------|----------------------------------|
| 0           | 15   | Graphic 1   | Same as the 0x0101 data segment. |
| 15          | 15   | Graphic 2   | Same as the 0x0101 data segment. |
| 30          | 15   | Graphic 3   | Same as the 0x0101 data segment. |
| 45          | 15   | Graphic 4   | Same as the 0x0101 data segment. |
| 60          | 15   | Graphic 5   | Same as the 0x0101 data segment. |
| 75          | 15   | Graphic 6   | Same as the 0x0101 data segment. |
| 90          | 15   | Graphic 7   | Same as the 0x0101 data segment. |

typedef \_packed struct

{

interaction\_figure\_t interaction\_figure[7];
}interaction\_figure\_4\_t;

| Byte Offset | Size | Description             | Remarks                                                                                                    |
|-------------|------|-------------------------|------------------------------------------------------------------------------------------------------------|
| 0           | 2    | Data content ID         | 0x0110                                                                                                     |
| 2           | 2    | Sender ID               | The sender ID needs to be verified.                                                                        |
| 4           | 2    | Receiver ID             | The receiver ID needs to be verified. Data can be sent only to a player client corresponding to the robot. |
| 6           | 15   | Character configuration | For more information, see the graphic data introduction.                                                   |
| 21          | 30   | Character               | -                                                                                                          |

Table 2-30 Sub-content ID: 0x0110

#### typedef \_packed struct

{

#### graphic\_data\_struct\_t grapic\_data\_struct; uint8\_t data[30];

} ext\_client\_custom\_character\_t;

Table 2-31 Decision-making command of a Sentry: 0x0120

| Byte Offset | Size | Description                                                 | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 4    | Relevant decision-<br>making commands<br>of a Sentry Robot. | <ul> <li>Bit 0: whether the Sentry Robot confirms to revive.</li> <li>A value of 0 indicates that the Sentry Robot confirms not to revive, even though the Respawn Process of the Sentry Robot is completed.</li> <li>A value of 1 indicates that the Sentry Robot confirms to revive. The Sentry Robot revives immediately after the Respawn Process is completed.</li> <li>Bit 1: whether the Sentry Robot confirms to exchange for Instant Respawn.</li> <li>A value of 0 indicates that the Sentry Robot confirms not to exchange for Instant Respawn.</li> </ul> |

| Byte Offset | Size | Description | Remarks                                                                                                                                                                                                                                                                                                       |
|-------------|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      |             | • A value of 1 indicates that the Sentry Robot confirms to                                                                                                                                                                                                                                                    |
|             |      |             | exchange for Instant Respawn. In this case, if the Sentry Robot                                                                                                                                                                                                                                               |
|             |      |             | meets the requirements for Instant Respawn, Gold Coins are                                                                                                                                                                                                                                                    |
|             |      |             | immediately consumed for Instant Respawn.                                                                                                                                                                                                                                                                     |
|             |      |             | Bits 2-12: the projectile allowance to be obtained by a Sentry Robot                                                                                                                                                                                                                                          |
|             |      |             | through exchange. The value at the start of a round is 0. After the                                                                                                                                                                                                                                           |
|             |      |             | value is changed, the Sentry Robot can exchange Gold Coins for                                                                                                                                                                                                                                                |
|             |      |             | projectile allowance in the Restoration Zone.                                                                                                                                                                                                                                                                 |
|             |      |             | The value must be monotonically increased. Otherwise, the value is                                                                                                                                                                                                                                            |
|             |      |             | considered invalid.                                                                                                                                                                                                                                                                                           |
|             |      |             | Example: The value must be set to 0 at the start of a round. Then, the Sentry Robot can change the value from 0 to X, and a number of X Gold Coins are consumed for exchanging X projectile allowance. Subsequently, the Sentry Robot can change the value from X to X+Y. The rest can be deduced by analogy. |
|             |      |             | Bits 13-16: the number of requests sent by a Sentry Robot to obtain                                                                                                                                                                                                                                           |
|             |      |             | projectile allowance through remote exchange. A value at the start                                                                                                                                                                                                                                            |
|             |      |             | of a round is 0. After the value is changed, the Sentry Robot can                                                                                                                                                                                                                                             |
|             |      |             | request to remotely exchange Gold Coins for projectile allowance.                                                                                                                                                                                                                                             |
|             |      |             | The value must be monotonically increased by 1 at a time.                                                                                                                                                                                                                                                     |
|             |      |             | Otherwise, the value is considered invalid.                                                                                                                                                                                                                                                                   |
|             |      |             | Example: The value must be set to 0 at the start of a round. Then, the Sentry Robot can change the value from 0 to 1, and Gold Coins are consumed for remotely exchanging for projectile allowance. Subsequently, the Sentry Robot can change the value from 1 to 2. The rest can be deduced by analogy.      |
|             |      |             | Bits 17-20: the number of requests sent by a Sentry Robot to obtain                                                                                                                                                                                                                                           |
|             |      |             | HP through remote exchange. A value at the start of a round is 0.                                                                                                                                                                                                                                             |
|             |      |             | After the value is changed, the Sentry Robot can request to remotely                                                                                                                                                                                                                                          |
|             |      |             | exchange Gold Coins for HP.                                                                                                                                                                                                                                                                                   |
|             |      |             | The value must be monotonically increased by 1 at a time.                                                                                                                                                                                                                                                     |
|             |      |             | Otherwise, the value is considered invalid.                                                                                                                                                                                                                                                                   |
|             |      |             | Example: The value must be set to 0 at the start of a round. Then,<br>the Sentry Robot can change the value from 0 to 1, and Gold<br>Coins are consumed for remotely exchanging for HP.<br>Subsequently, the Sentry Robot can change the value from 1 to<br>2. The rest can be deduced by analogy.            |

| Byte Offset | Size | Description | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      |             | When the Sentry Robot sends these sub-commands, the server<br>processes the sub-commands in sequence from lower bits to higher<br>bits until all sub-commands are processed or no processing can be<br>performed.<br><b>Example:</b> The number of Gold Coins in the team is 0, and the<br>Sentry Robot is defeated at this time. The value of bit 0 is 1, the<br>value of bit 1 is 1, and the value of bits 2 to 12 is 100 (assuming<br>that the Sentry Robot has not exchanged for projectile allowance<br>before). In this case, the number of Gold Coins in the team is not<br>enough for the Sentry Robot to exchange for Instant Respawn.<br>Therefore, the server ignores subsequent commands and waits<br>for the next group of commands from the Sentry Robot.<br>Bits 21-31: Reserved bits |

#### typedef \_packed struct

{
uint32\_t sentry\_cmd;

#### } sentry\_cmd\_t;

Table 2-32 Decision-making command of a Radar: 0x0121

| Byte Offset | Size | Description                                                                       | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | Whether the Radar<br>confirms to trigger<br>the "double<br>vulnerability" effect. | The value at the start of a round is 0. The value can be changed for<br>the Radar to request triggering the "double vulnerability" effect. If<br>the Radar has a chance to trigger the "double vulnerability" effect,<br>the effect is triggered.<br>The value must be monotonically increased by 1 at a time.<br>Otherwise, the value is considered invalid.<br><b>Example: The value at the start of a round is 0. Then, the Radar</b><br>can change the value from 0 to 1. If the Radar has a chance to<br>trigger the "double vulnerability" effect, the effect is triggered.<br><b>Subsequently, the Radar can change the value from 1 to 2. The</b><br>rest can be deduced by analogy.<br>If the "double vulnerability" effect is in effect when the Radar<br>requests to trigger the effect, the effect requested for the second<br>time is triggered after the effect requested for the first time elapses. |

#### typedef \_packed struct

{
 uint8\_t radar\_cmd;
} radar\_cmd\_t;

## **3.** Small Map Interaction Data

## **3.1 Data Transmission by Player Clients**

• An Aerial Gimbal Operator can send fixed data to robots through a player client's big map.

The command code is 0x0303, which is transmitted when triggered, at an interval of at least 0.5 seconds.

#### **Transmission method 1:**

- 1 Tap the avatar of an own side's robot.
- (Optional) Press a keyboard key or tap an opponent robot's avatar.
- ③ Tap any location on the Small Map. Through this method, map coordinate data is sent to robots selected by your own team. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.

#### **Transmission method 2:**

- (1) (Optional) Press a keyboard key or tap an opponent robot's avatar.
- ② Tap any location on the Small Map. Through this method, map coordinate data is sent to all robots of your own team. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.
- An operator of a robot that uses the semiautomatic control method can send fixed data to robots through a player client's big map.

The command code is 0x0303; transmitted when triggered, at an interval of at least 3 seconds.

#### **Transmission method:**

- (1) (Optional) Press a keyboard key or tap an opponent robot's avatar.
- ② Tap any location on the Small Map. Through this method, map coordinate data is sent to a robot corresponding to the operator. If an opponent robot's avatar is tapped, the target robot ID will replace the coordinate data.

The robot that chooses to use the semiautomatic control method can receive information sent by the Aerial Gimbal Operator and the information sent by a corresponding operator. For the differences between the two information sources, see the description about information sources in the table below.

| Byte Offset | Size | Description                                            | Remarks                                           |
|-------------|------|--------------------------------------------------------|---------------------------------------------------|
| 0           | 4    | The x-axis coordinate of the target position; unit: m. | When the target robot ID is sent, the value is 0. |

Table 3-1 Command code ID: 0x0303

| Byte Offset | Size | Description                                                                | Remarks                                                             |
|-------------|------|----------------------------------------------------------------------------|---------------------------------------------------------------------|
| 4           | 4    | The y-axis coordinate of the target position; unit: m.                     | When the target robot ID is sent, the value is<br>0.                |
| 8           | 1    | The generic key value of the key pressed<br>by the Aerial Gimbal Operator. | When no key is pressed, the value is 0.                             |
| 9           | 1    | The opponent's robot ID.                                                   | When coordinate data is sent, the value is 0                        |
| 10          | 2    | The information source ID.                                                 | For more information about the ID correspondence, see the appendix. |

```
typedef _packed struct
```

{

float target\_position\_x; float target\_position\_y; uint8\_t cmd\_keyboard; uint8\_t target\_robot\_id; uint8\_t cmd\_source; }map\_command\_t;

## 3.2 Data Receiving by Player Clients

A player client's Small Map can receive robot data.

Through regular links, a Radar can send an opponent robot's coordinate data to all of its own side's player clients.

The position will be displayed on the Small Maps of all player clients of its own side.

Table 3-2 Command code ID: 0x0305

| Byte Offset | Size | Description                          | Remarks                                                           |
|-------------|------|--------------------------------------|-------------------------------------------------------------------|
| 0           | 2    | The target robot's ID.               | _                                                                 |
| 2           | 4    | Target's x-axis coordinate; unit: m. | Not displayed when x- and y-coordinates exceed the boundaries.    |
| 6           | 4    | Target's y-axis coordinate; unit: m. | Not displayed when x- and y-coordinates<br>exceed the boundaries. |

#### typedef \_packed struct

#### uint16\_t target\_robot\_id;

# float target\_position\_x; float target\_position\_y; }map\_robot\_data\_t;

Through regular links, a Sentry Robot or a robot that uses semiautomatic control can send route coordinate data to the player client of the corresponding operator. The route will be displayed on the Small Map.

| Table   | 3-3 | Command | code | ١D·            | 0x0307  |
|---------|-----|---------|------|----------------|---------|
| 1 aoite | 55  | Communa | couc | $\mathbf{n}$ . | 0.00007 |

| Byte Offset | Size | Description                                                                                                                      | Remarks                                                                                                                                                                                                                                                  |
|-------------|------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 1    | <ol> <li>Go to the target point to attack</li> <li>Go to the target point to defend</li> <li>Move to the target point</li> </ol> | -                                                                                                                                                                                                                                                        |
| 1           | 2    | The x-axis coordinate at the route starting point, unit: dm.                                                                     | The lower left corner of the Small Map is the origin. The horizontal right is the positive x-axis                                                                                                                                                        |
| 3           | 2    | The y-axis coordinate at the route starting point; unit: m.                                                                      | direction, and the vertical upward is the positive<br>y-axis direction. The displayed position will zoom<br>in and out according to the site's and Small Map's<br>dimensions. Positions exceeding the boundaries<br>will be displayed on the boundaries. |
| 5           | 49   | The array of x-axis incremental values of route points; unit: dm.                                                                | The incremental values are calculated relative to<br>the previous point, resulting in 49 new points in                                                                                                                                                   |
| 54          | 49   | The array of y-axis incremental values of route points; unit: dm.                                                                | total. The positions of these new points are<br>determined based on the x- and y-axis incremental<br>values.                                                                                                                                             |
| 103         | 2    | Sender ID                                                                                                                        | It needs to be matched with one's own ID. For<br>more information about the IDs, see the appendix.                                                                                                                                                       |

#### typedef \_packed struct

{

uint8\_t intention; uint16\_t start\_position\_x; uint16\_t start\_position\_y; int8\_t delta\_x[49]; int8\_t delta\_y[49]; uint16\_t sender\_id; }map\_data\_t; A robot can send custom messages to any player client of its own side through a regular link. The message is displayed at a specific position on the player client.

| Table 3-4 Command | l code ID: 0x0308 |
|-------------------|-------------------|
|-------------------|-------------------|

| Byte Offset | Size | Description | Remarks                                                                                                                                                                     |
|-------------|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 2    | Sender ID   | The sender ID needs to be verified.                                                                                                                                         |
| 2           | 2    | Receiver ID | The receiver ID needs to be verified. Data can be sent only to a player client of the own side.                                                                             |
| 4           | 30   | Character   | Characters are sent in the UTF-16 encoding format and can be<br>displayed in Chinese. Pay attention to the endianness of data when<br>the data is encoded for transmission. |

typedef \_packed struct
{
 uint16\_t sender\_id;
 uint16\_t receiver\_id;
 uint8\_t user\_data[30];
} custom\_info\_t;

## 4. VTM Link Data Descriptions

## **4.1 Custom Controller and Robot Interaction Data Descriptions**

An operator can use a Custom Controller to send data to corresponding robots through VTM links.

Table 4-1 Command code ID: 0x0302

| Byte Offset | Size | Description |
|-------------|------|-------------|
| 0           | 30   | Custom data |

typedef \_packed struct

```
{
```

uint8\_t data[x];

```
}custom_robot_data_t;
```

### 4.2 Keyboard-Mouse Remote Control Data

The keyboard and mouse remote control data sent via the remote controller is synchronized to the corresponding robot through VTM links.

| Table 4-2 Command | code ID: 0x0304 |
|-------------------|-----------------|
|-------------------|-----------------|

| Byte Offset | Size | Description                                                                                                                                                                                          |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 2    | x-axis moving speed of the mouse. A negative value indicates a left movement.                                                                                                                        |
| 2           | 2    | y-axis moving speed of the mouse. A negative value indicates a downward movement.                                                                                                                    |
| 4           | 2    | Scroll wheel's moving speed of the mouse. A negative value indicates a backward movement.                                                                                                            |
| 6           | 1    | Whether the mouse's left button is pressed. A value of 0 indicates that it is not pressed, and a value of 1 indicates that it is pressed.                                                            |
| 7           | 1    | Whether the mouse's right button is pressed. A value of 0 indicates that it is not pressed, and a value of 1 indicates that it is pressed.                                                           |
| 8           | 2    | <ul> <li>The keyboard key information. Each bit corresponds to a key. A value of 0 indicates that it is not pressed, and a value of 1 indicates that it is pressed:</li> <li>Bit 0: W key</li> </ul> |

| Byte Offset | Size | Description        |
|-------------|------|--------------------|
|             |      | • Bit 1: S key     |
|             |      | • Bit 2: A key     |
|             |      | • Bit 3: D key     |
|             |      | • Bit 4: Shift key |
|             |      | • Bit 5: Ctrl key  |
|             |      | • Bit 6: Q key     |
|             |      | • Bit 7: E key     |
|             |      | • Bit 8: R key     |
|             |      | • Bit 9: F key     |
|             |      | • Bit 10: G key    |
|             |      | • Bit 11: Z key    |
|             |      | • Bit 12: X key    |
|             |      | • Bit 13: C key    |
|             |      | • Bit 14: V key    |
|             |      | • Bit 15: B key    |
| 10          | 2    | Reserved bits      |

#### typedef \_packed struct

{

int16\_t mouse\_x;

int16\_t mouse\_y;

int16\_t mouse\_z;

int8 left\_button\_down;

int8 right\_button\_down;

uint16\_t keyboard\_value;

uint16\_t reserved;

}remote\_control\_t;

## **5.** Non-Link Data Description

An operator can use a Custom Controller to operate a player client by simulating a keyboard and a mouse.

| Table 5-1 | Command | code | ID: | 0x0306 |
|-----------|---------|------|-----|--------|
|           |         |      |     |        |

| Byte Offset | Size | Description                                                                                                  | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 2    | <ul> <li>Keyboard key value.</li> <li>Bits 0-7: value of Key 1</li> <li>Bits 8-15: value of Key 2</li> </ul> | <ul> <li>Only the keys made available by the player client are responded to.</li> <li>A generic key value is used, and two keys can be simultaneously pressed with no conflict. Any change in key sequence does not alter the effect of the pressed keys. In the absence of any new key information, the pressed status of the last data frame will be maintained.</li> </ul>                                                                                                                                     |
| 2           | 2    | <ul> <li>Bits 0-11: mouse's x-axis pixel position</li> <li>Bits 12-15: mouse's left-click status</li> </ul>  | • The position information is represented<br>by absolute pixel values (the resolution<br>used by player clients in the                                                                                                                                                                                                                                                                                                                                                                                            |
| 4           | 2    | <ul> <li>Bits 0-11: mouse y-axis pixel position</li> <li>Bits 12-15: mouse right-click status</li> </ul>     | <ul> <li>competition is 1920 x 1080, and the coordinates for the screen's upper left corner is (0,0)).</li> <li>When the mouse's pressed status is 1, it means the button is pressed; any other value indicates the button is not pressed. This information is responded to only after the mouse icon appears. In the absence of any new mouse information, the player client maintains the mouse information of the last data frame. After the mouse icon disappears, the data is no longer retained.</li> </ul> |
| 6           | 2    | Reserved bits                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



To move and click the mouse once, you need to first send the data frame for the specified position when the mouse is not pressed, then send the data frame obtained when the mouse is pressed at the same position, and finally send the data frame obtained when the mouse is pressed at the same position.

#### typedef \_packed struct

{
 uint16\_t key\_value;
 uint16\_t x\_position:12;
 uint16\_t mouse\_left:4;
 uint16\_t y\_position:12;
 uint16\_t mouse\_right:4;
 uint16\_t reserved;
}custom\_client\_data\_t;

## **Appendix 1 CRC Code Samples**

//crc8 generator polynomial:G(x)=x8+x5+x4+1
const unsigned char CRC8\_INIT = 0xff;
const unsigned char CRC8\_TAB[256] =

{

0x00, 0x5e, 0xbc, 0xe2, 0x61, 0x3f, 0xdd, 0x83, 0xc2, 0x9c, 0x7e, 0x20, 0xa3, 0xfd, 0x1f, 0x41,

0x9d, 0xc3, 0x21, 0x7f, 0xfc, 0xa2, 0x40, 0x1e, 0x5f, 0x01, 0xe3, 0xbd, 0x3e, 0x60, 0x82, 0xdc, 0x23, 0x7d, 0x9f, 0xc1, 0x42, 0x1c, 0xfe, 0xa0, 0xe1, 0xbf, 0x5d, 0x03, 0x80, 0xde, 0x3c, 0x62, 0xbe, 0xe0, 0x02, 0x5c, 0xdf, 0x81, 0x63, 0x3d, 0x7c, 0x22, 0xc0, 0x9e, 0x1d, 0x43, 0xa1, 0xff, 0x46, 0x18, 0xfa, 0xa4, 0x27, 0x79, 0x9b, 0xc5, 0x84, 0xda, 0x38, 0x66, 0xe5, 0xbb, 0x59, 0x07, 0xdb, 0x85, 0x67, 0x39, 0xba, 0xe4, 0x06, 0x58, 0x19, 0x47, 0xa5, 0xfb, 0x78, 0x26, 0xc4, 0x9a, 0x65, 0x3b, 0xd9, 0x87, 0x04, 0x5a, 0xb8, 0xe6, 0xa7, 0xf9, 0x1b, 0x45, 0xc6, 0x98, 0x7a, 0x24, 0xf8, 0xa6, 0x44, 0x1a, 0x99, 0xc7, 0x25, 0x7b, 0x3a, 0x64, 0x86, 0xd8, 0x5b, 0x05, 0xe7, 0xb9,

0x8c, 0xd2, 0x30, 0x6e, 0xed, 0xb3, 0x51, 0x0f, 0x4e, 0x10, 0xf2, 0xac, 0x2f, 0x71, 0x93, 0xcd, 0x11, 0x4f, 0xad, 0xf3, 0x70, 0x2e, 0xcc, 0x92, 0xd3, 0x8d, 0x6f, 0x31, 0xb2, 0xec, 0x0e, 0x50, 0xaf, 0xf1, 0x13, 0x4d, 0xce, 0x90, 0x72, 0x2c, 0x6d, 0x33, 0xd1, 0x8f, 0x0c, 0x52, 0xb0, 0xee, 0x32, 0x6c, 0x8e, 0xd0, 0x53, 0x0d, 0xef, 0xb1, 0xf0, 0xae, 0x4c, 0x12, 0x91, 0xcf, 0x2d, 0x73, 0xca, 0x94, 0x76, 0x28, 0xab, 0xf5, 0x17, 0x49, 0x08, 0x56, 0xb4, 0xea, 0x69, 0x37, 0xd5, 0x8b, 0x57, 0x09, 0xeb, 0xb5, 0x36, 0x68, 0x8a, 0xd4, 0x95, 0xcb, 0x29, 0x77, 0xf4, 0xaa, 0x48, 0x16, 0xe9, 0xb7, 0x55, 0x0b, 0x88, 0xd6, 0x34, 0x6a, 0x2b, 0x75, 0x97, 0xc9, 0x4a, 0x14, 0xf6, 0xa8,

0x74, 0x2a, 0xc8, 0x96, 0x15, 0x4b, 0xa9, 0xf7, 0xb6, 0xe8, 0x0a, 0x54, 0xd7, 0x89, 0x6b, 0x35,

```
};
```

unsigned char Get\_CRC8\_Check\_Sum(unsigned char \*pchMessage,unsigned int dwLength,unsigned char ucCRC8)

{ unsigned char ucIndex; while (dwLength--) { ucIndex = ucCRC8^(\*pchMessage++); ucCRC8 = CRC8\_TAB[ucIndex]; } return(ucCRC8); } /\* **\*\*** Descriptions: CRC8 Verify function \*\* Input: Data to Verify, Stream length = Data + checksum \*\* Output: True or False (CRC Verify Result) \*/ unsigned int Verify CRC8 Check Sum(unsigned char \*pchMessage, unsigned int dwLength) { unsigned char ucExpected = 0; if ((pchMessage == 0)  $\parallel$  (dwLength <= 2)) return 0; ucExpected = Get\_CRC8\_Check\_Sum (pchMessage, dwLength-1, CRC8\_INIT); return ( ucExpected == pchMessage[dwLength-1] ); }

```
/*
** Descriptions: append CRC8 to the end of data
** Input: Data to CRC and append, Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC8_Check_Sum(unsigned char *pchMessage, unsigned int dwLength)
{
unsigned char ucCRC = 0;
pchMessage[dwLength-1] = ucCRC;
```

if ((pchMessage == 0) || (dwLength <= 2)) return;

ucCRC = Get CRC8 Check Sum ( (unsigned char \*)pchMessage, dwLength-1, CRC8 INIT);

}

uint16 t CRC INIT = 0xffff;

const uint16 t wCRC Table[256] =

```
{
```

0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,

```
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
/*
** Descriptions: CRC16 checksum function
** Input: Data to check,Stream length, initialized checksum
** Output: CRC checksum
*/
uint16_t Get_CRC16_Check_Sum(uint8_t *pchMessage,uint32_t dwLength,uint16_t wCRC)
{
Uint8 t chData;
if (pchMessage == NULL)
{
return 0xFFFF;
}
while(dwLength--)
{
chData = *pchMessage++;
(wCRC) = ((uint16 t)(wCRC) >> 8) \land wCRC Table[((uint16 t)(wCRC) \land (uint16 t)(chData)) & 0x00ff];
}
return wCRC;
}
/*
** Descriptions: CRC16 Verify function
** Input: Data to Verify.Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
uint32 t Verify CRC16 Check Sum(uint8 t *pchMessage, uint32 t dwLength)
{
uint16_t wExpected = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return FALSE;
}
wExpected = Get CRC16 Check Sum (pchMessage, dwLength - 2, CRC INIT);
```

```
return ((wExpected & 0xff) == pchMessage[dwLength - 2] && ((wExpected >> 8) & 0xff) ==
pchMessage[dwLength - 1]);
}
/*
** Descriptions: append CRC16 to the end of data
** Input: Data to CRC and append, Stream length = Data + checksum
** Output: True or False (CRC Verify Result)
*/
void Append_CRC16_Check_Sum(uint8_t * pchMessage,uint32_t dwLength)
{
uint16_t wCRC = 0;
if ((pchMessage == NULL) || (dwLength <= 2))
{
return;
}
wCRC = Get_CRC16_Check_Sum ( (U8 *)pchMessage, dwLength-2, CRC_INIT );
pchMessage[dwLength-2] = (U8)(wCRC & 0x00ff);
pchMessage[dwLength-1] = (U8)((wCRC >> 8)& 0x00ff);
```

## **Appendix 2 ID Descriptions**

The robot IDs are as follows:

- 1: Red Team's Hero Robot
- 2: Red Team's Engineer Robot
- 3/4/5: Red Team's Standard Robot (corresponding to robot IDs 3-5)
- 6: Red Team's Aerial Robot
- 7: Red Team's Sentry Robot
- 8: Red Team's Dart
- 9: Red Team's Radar
- 10: Red Team's Outpost
- 11: Red Team's Base
- 101: Blue Team's Hero Robot
- 102: Blue Team's Engineer Robot
- 103/104/105: Blue Team's Standard Robot (corresponding to robot IDs 3-5)
- 106: Blue Team's Aerial Robot
- 107: Blue Team's Sentry Robot
- 108: Red Team's Dart
- 109: Blue Team's Radar
- 110: Blue Team's Outpost
- 111: Blue Team's Base

The player client IDs are as follows:

- 0x0101: Red Team's Hero Robot player client
- 0x0102: Red Team's Engineer Robot player client
- 0x0103/0x0104/0x0105: Red Team's Standard Robot player client (corresponding to robot IDs 3-5)
- 0x0106: Red Team's Aerial Robot player client
- 0x016A: Blue Team's Aerial Robot player client
- 0x0165: Blue Team's Hero Robot player client
- 0x0166: Blue Team's Engineer Robot player client

- 0x0167/0x0168/0x0169: Blue Team's Standard Robot player client (corresponding to robot IDs 3-5)
- 0x8080: Referee System's server (for sending decision-making commands to Sentry Robots and Radar)



E-mail: robomaster@dji.com Forum: bbs.robomaster.com Website: www.robomaster.com

 Tel:
 +86 (0)755 36383255 (GTC+8, 10:30AM-7:30PM, Monday to Friday)

 Address:
 T2, 22F, DJI Sky City, No. 55 Xianyuan Road, Nanshan District, Shenzhen, China