

声明

参赛人员不得从事或参与任何经 RoboMaster 组委会认定的涉嫌公众争端、敏感议题、冒犯大众或某些大众群体或其它破坏 RoboMaster 形象的行为,否则,组委会有权永久取消违规人员的比赛资格。

阅读提示

符号说明

⊘ 禁止	▲ 重要注意事项	操作、使用提示	词汇解释、参考信息
------	----------	---------	-----------

修改日志

日期	版本	修改记录
2020.07.15	V1.0	首次发布

目录

	声明	月	2
		卖提示	
		符号说明	
		收日志	
		····· = 简介	
		线上评审日程	
		参赛人员及要求	
	3.1	参赛人员	7
	3.2	参赛组别	7
	3.3	参赛要求	7
4.		评分方式及标准	9
5.		奖项设置	11

表目录

表	2-1	线上评审日程
表	3-1	参赛材料要求
表	4-1	评分标准9
表	5-1	人工智能挑战赛奖项设置11
表	5-2	学术激励奖奖励

1. 简介

RoboMaster 是由 DJI 大疆创新搭建,服务于全球青年工程师的机器人教育竞技平台,包含赛事、校园生态、文化周边等多项内容。

2015年,DJI 发起了 RoboMaster 机甲大师对抗赛,希望培养出一批富有才华的工程师和科学家。在这个比赛中,参赛队伍需要研发出一批地面机器人和空中机器人,在场地上射击弹丸,互相对抗。机器人的数据交互由一个专门的裁判系统进行监测,裁判系统将弹丸的伤害转换为 HP 的动态变化,最终在一个类似游戏的观赛页面上呈现给观众,现代机器人的竞技模式正在不断的进化。

近年来,深度学习技术也不断被提及,重塑了计算机视觉和其他人工智能研究领域的前沿方向。在机器人研究中,基于深度神经网络(DNN)的强化学习能够让机器人自主进行决策,随着像围棋、魔兽、星际争霸等大众熟知的游戏被用作研究平台,使得机器人的自主决策被应用到人类生活这件事充满了想象。作为一个新兴的机器人学术平台,RoboMaster 组委会发起了 RoboMaster 人工智能挑战赛,让全球爱好者一起研究基于深度神经网络(DNN)的机器人技术,并有望将成果应用于野外救援、无人驾驶、自动物流等行业,造福人类生活。

在 RoboMaster 2020 机甲大师赛中,由于受到新型冠状病毒肺炎疫情的影响,人工智能挑战赛将取消线下比赛,设置线上评审环节。本赛季所有成功报名的参赛队伍可根据实际情况参与线上评审。组委会将对导航与运动规划、感知、决策三个维度,设置三个奖项评选。

2. 线上评审日程

线上评审将以提交线上视频并评审的形式进行。

表 2-1 线上评审日程

日程 (北京时间)	项目	备注
2020年7月15日12:00-2020 年7月31日12:00	参赛确认	通过报名系统报名参与线上评审,并确认参选组别
2020年8月24日12:00-2020 年8月27日12:00	提交视频与代码	所有成功报名线上评审的参赛队伍在报名系统 中提交视频与代码
2020 年 8 月 31 日-2020 年 9 月 4 日	评审阶段	组委会依据评审规范进行评审
2020 年 9 月 15 日之前	公布获奖名单	将在 RoboMaster 官网进行公示

3. 参赛人员及要求

3.1 参赛人员

通过本赛季报名环节的参赛队伍均可参加人工智能挑战赛线上评审。

提交视频中,展示过程的讲解人由参赛队伍自行决定。

3.2 参赛组别

考虑疫情期间队伍的开发人力与环境,为了保证比赛的公平和客观,参赛队伍提交的内容可以从导航与运动规划、感知、决策这三个技术方向中选择一个方向进行提交(多个方向需要单独额外提交)。

技术内容和实现效果,需要涉及到以下任意一个方向:

组别一 导航与运动规划

在比赛环境中,能够高速、无碰撞的进行运动规划,能够有效的表示并规避静态障碍物与高速运动的其他 机器人,整个运动过程平滑不突兀。

组别二 感知(敌方与我方车辆的定位与识别)

利用哨岗与机器人上的感知系统,能够稳定、准确的对机器人目标进行检测与识别,标明目标在某一个坐标系下的位置与姿态信息。

组别三 决策(多机器人的决策规划)

能够将决策系统有效的落地于实际比赛场景中,能够针对不同的比赛情境下进行不同的有效决策行为。

3.3 参赛要求

提交材料包括视频与代码(包含使用文档)两大部分,具体要求如下:

表 3-1 参赛材料要求

材料	形式	规范	
视频	 在 YouTube 或者其他 线上平台上传加密的 视频 在报名系统的"视频地 址"和"视频密码"提 示框中分别输入视频 链接和对应的密码 	 1. 在视频片头需要注明基本信息例如学校名称、队伍名称、拍摄日期和地点 2. 推荐视频内容由三部分组成 a) 机器人系统介绍:需要描述整个机器人的传感器与计算设备组成 b) 相关算法介绍:需要介绍使用的算法框架与流程 c) 实际效果与指标介绍:需要展示实际执行的流程并明确效果指标(精度、速度、交互等),为了说明一些 	

材料	形式	规范	
		指标参数,队伍可以利用模拟器进行辅助说明(不能拍摄实物的参赛队伍,可选择录制模拟器效果,有实际场景更佳),具体评选要求详见"表 4-1 评分标准" 3. 在视频内不要展示毫无意义的场景,非重点内容加速展示需要明确加速倍速,保证整个视频简洁明了,时长不得超过10分钟	
		4. 推荐拍摄多个不同任务执行的素材并适当的剪辑,以便保证整个视频的可读性,但是禁止添加混淆视听的特效或者后期处理,禁止借位拍摄手动控制来达到自动任务的执行,如果违反视为作弊处理,视情况严重者将被取消比赛资格	
		5. 参赛队可选择在视频中加入语音讲解和文字说明	
代码	代码需提交在 github 公开仓库中在报名系统的"Github 地址"提示框中输入	 需要包括指导说明性文件,若 wiki 或 readme 文件均不存在则无此部分得分 开源的代码不要求涵盖参赛组别的所有技术内容,选择其中一个技术点即可(例如:感知组开源哨岗的机器人定位 	
	Github 地址	算法代码即可) 3. 具体评选要求详见"表 4-1 评分标准"	

4. 评分方式及标准

按如下表格对 RM2020 赛季成果进行展示,展示成果按各板块权重计分,折合原技术评审分数计入总分。 表 4-1 评分标准

板块	项目	内容	权重%
	机器人系统介绍	需要描述 整个机器人的传感器参数与计算设备环境	6
	相关算法设计	展示工程性:突出整个系统的框架和流程,抓住重点展示解决了哪些工程问题(更多介绍和详细的论证可以放在代码仓库文件文字部分中)	7
		方法创新性:突出整个算法的框架和流程,抓住重点 展示算法有哪些创新性和亮点(更多介绍和详细的论证可以放在代码仓库文件文字部分中)	7
视频展示		组别一 导航组 在静态障碍物组成的地图中完成高速的运动规划 (7%),有效规避出现的动态障碍物(7%),对于狭窄的障碍物之间可以有效通过(6%)	
	实际效果与指标	组别二 感知组 机器人识别敌方机器人装甲板(4%),识别敌方机器 人(8%),哨岗识别敌方机器人(8%),并且将结果 可视化与一个基准数据进行比较说明定位准确度	20
		组别三 决策组 核心展示场景需要包括:在不同血量、攻击力、弹丸余 量等场景下的多机器人之间的协作(13%)、单机器人 的有效操作(7%)等	
代码展示	算法代码展示	a) 需要包括指导说明性文件,若 wiki 和 readme 文件均不存在则无此部分得分 b) 软件功能介绍 c) 软件效果展示。需要体现整体项目的创新性和优势,结合可视化数据(例如视频网址,gif 图,测试图表等)对最终效果进行展示与定量分析 d) 依赖工具、软硬件环境	35

		e) 编译、安装方式	
		f) 文件目录结构及文件用途说明	
		g) 软件与硬件的系统框图,数据流图	
		h) 原理介绍与理论支持分析	
		i) 软件架构或层级图	
		j) 代码规范	
		k) 是否存在开源协议	
		I) 函数、变量命名是否规范、统一	
		m) 关键功能函数、变量是否存在清晰的注释	
		n) 整体可编译可运行,容易测试,包含不同情况下	
		的测试脚本或涵盖集成测试	
		o) 是否遵循某种设计模式	
		p) 开源与分享,截止到评选日的开源影响力(star数)	
		根据已提交技术报告所获成绩计入总分	
		A: 25	
#- 14-14	技术报告成绩	B: 20	25
技术报告		C: 15	25
		D: 5	
		未参与: 0	

5. 奖项设置

奖项名称后续会有调整,具体以实际发放的证书为准。

奖项设置如下所示:

表 5-1 人工智能挑战赛奖项设置

奖项	数量	芝励	
一等奖	1/每组	 奖金 2000 美元(税前) 荣誉证书(团体) 荣誉证书(每人)	
二等奖	2/每组	 奖金 1000 美元(税前) 荣誉证书(团体) 荣誉证书(每人)	
三等奖	3/每组	◆ 荣誉证书(团体)◆ 荣誉证书(每人)	
优秀奖	若干	◆ 荣誉证书(团体)◆ 荣誉证书(每人	

表 5-2 学术激励奖奖励

奖励	数量	备注
 奖金 10,000 美元(税前) 荣誉证书(每人)	至多 1	● 等级评定将主要围绕学术价值、教育价值和实
 奖金 2,500 美元(税前) 荣誉证书(每人)	至多2	用价值等方面评审,由组委会评审打分后决定,最终解释权归 RoboMaster 组委会所有。 ■ 具体申请方式请参考《RoboMaster 2020 人工
 奖金 1,000 美元 (税前) 荣誉证书 (每人)	至多 5	智能挑战赛参赛手册 V1.1》附录二。

邮箱: robomaster@dji.com 论坛: http://bbs.robomaster.com 官网: http://www.robomaster.com

电话: 0755-36383255(周一至周五10:30-19:30)

地址:广东省深圳市南山区西丽镇茶光路1089号集成电路设计应用产业园2楼202